Intrinsic gating for small-animal computed tomography: a robust ECG-less paradigm for deriving cardiac phase information and functional imaging.
نویسندگان
چکیده
BACKGROUND A projection-based method of intrinsic cardiac gating in small-animal computed tomography imaging is presented. METHODS AND RESULTS In this method, which operates without external ECG monitoring, the gating reference signal is derived from the raw data of the computed tomography projections. After filtering, the derived gating reference signal is used to rearrange the projection images retrospectively into data sets representing different time points in the cardiac cycle during expiration. These time-stamped projection images are then used for tomographic reconstruction of different phases of the cardiac cycle. Intrinsic gating was evaluated in mice and rats and compared with extrinsic retrospective gating. An excellent agreement was achieved between ECG-derived gating signal and self-gating signal (coverage probability for a difference between the 2 measurements to be less than 5 ms was 89.2% in mice and 85.9% in rats). Functional parameters (ventricular volumes and ejection fraction) obtained from the intrinsic and the extrinsic data sets were not significantly different. The ease of use and reliability of intrinsic gating were demonstrated via a chemical stress test on 2 mice, in which the system performed flawlessly despite an increased heart rate. Because of intrinsic gating, the image quality was improved to the extent that even the coronary arteries of mice could be visualized in vivo despite a heart rate approaching 430 bpm. Feasibility of intrinsic gating for functional imaging and assessment of cardiac wall motion abnormalities was successfully tested in a mouse model of myocardial infarction. CONCLUSIONS Our results demonstrate that self-gating using advanced software postprocessing of projection data promises to be a valuable tool for rodent computed tomography imaging and renders ECG gating with external electrodes superfluous.
منابع مشابه
Artifact reduction techniques in Cone Beam Computed Tomography (CBCT) imaging modality
Introduction: Cone beam computed tomography (CBCT) was introduced and became more common based on its low cost, fast image procedure rate and low radiation dose compared to CT. This imaging modality improved diagnostic and treatment-planning procedures by providing three-dimensional information with greatly reduced level of radiation dose compared to 2D dental imaging modalitie...
متن کاملDesign of Small Animal Computed Tomography Imaging for in vitro and in vivo Studies
Introduction: Mini Computed Tomography (mini-CT) was suggested in biomedical research to investigate tissues and small animals. We present designed and built a mini x-ray computed tomography (mini-CT) for small animals as well as industrial component imaging. Materials and Methods: The system used in this study includes a X-ray tube 20kV to 160kV and a flat pa...
متن کاملLow kilovolt “prospective ECG-triggering” vs. “retrospective ECG-gating” coronary CTA: comparison of image quality and radiation dose
Background: To compare image quality and radiation doses of low kilovolt (kV) “prospective ECG-triggering” (PT) and standard “retrospective ECG-gating” (RG) coronary computed tomography (CT) angiography. Materials and Methods: A total of 101 consecutive patients (76 males, 25 females; mean age: 55.44 ± 8.28 years) with low-to-intermediate risk status for coronary artery disease and with a body ...
متن کاملMultislice CT angiography in cardiac imaging: prospective ECG-gating or retrospective ECG-gating?
With the advent of multislice CT more than a decade ago, multislice CT angiography has demonstrated a huge potential in the less invasive imaging of cardiovascular disease, especially in the diagnosis of coronary artery disease. The diagnostic accuracy of multislice CT angiography has been significantly augmented with the rapid technical developments ranging from the initial 4-slice, to the cur...
متن کاملAdvanced Motion Correction Methods in PET
With the arrival of increasingly higher resolution PET systems, small amounts of motion can cause significant blurring in the images, compared to the intrinsic resolutions of the scanners. In this work, we have reviewed advanced correction methods for the three cases of (i) unwanted patient motion, as well as motions due to (ii) cardiac and (iii) respiratory cycles. For the first type of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation. Cardiovascular imaging
دوره 1 3 شماره
صفحات -
تاریخ انتشار 2008